Hollow magnetic microspheres obtained by nanoparticle adsorption on surfactant stabilized microbubbles.

نویسندگان

  • Artem Kovalenko
  • Julien Jouhannaud
  • Prasad Polavarapu
  • Marie Pierre Krafft
  • Gilles Waton
  • Geneviève Pourroy
چکیده

We report on the stabilization of nanoparticle-decorated microbubbles for long periods of time using a synergism between a soluble surfactant and nanoparticles. The soluble surfactant is the perfluoroalkyl phosphate C8F17(CH2)2OP(O)(OH)2 (labeled F8H2Phos) and the nanoparticles (NPs) are 20-25 nm cobalt ferrite (CoFe2O4). The NP-F8H2Phos system has been studied by dynamic light scattering, dynamic magnetic susceptibility measurements and thermal gravimetric analysis. Microbubbles with diameters in the 1-20 μm range have been stabilized in 0.1 M NaCl brine. Its presence is crucial for the long-term stabilization. The surfactant adsorbs rapidly on bubbles and slows down the bubble shrinkage. Thus, the NPs can attach to the bubble and form a hollow sphere with a rigid shell. The charge screening by NaCl favors the attachment of NPs to the bubble surface. The coverage of the bubbles by the CoFe2O4 nanoparticle layer is confirmed by thermally induced inflation-deflation experiments and the control of bubbles with a magnetic field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and application of hollow magnetic graphitic carbon microspheres with/without TiO2 nanoparticle layer on the surface.

Hollow magnetic graphitic carbon microspheres (HMGSs) with/without a TiO(2) nanoparticle layer on their surfaces are designed and synthesized by combining the bubble-template method, assembly of beta-cyclodextrin and Fe(3)O(4) stabilized by oleic acid and ammonia, and consequent graphitization reaction. HMGSs have potential in adsorption, enrichment, magnetic-assisted separation and drug delivery.

متن کامل

Surfactant Removal from Mesoporous ‎Silica Shell of Core-Shell Magnetic ‎Microspheres by Modified Supercritical ‎CO2‎

   In this paper, a kind of core–shell magnetic mesoporous microspheres of Fe3O4@SiO2@meso-SiO2 with high surface areawas prepared, where magnetic Fe3O4 nanospheres were used as the inner core, tetraethyl orthosilicate (TEOS) as silica source, and cetyltrimethylamonium bromide (CTAB) as pore forming agent. Methanol-enhanced s...

متن کامل

Two-step self-assembly of iron oxide into three-dimensional hollow magnetic porous microspheres and their toxic ion adsorption mechanism.

Hollow magnetic porous Fe(3)O(4)/α-FeOOH microspheres, with abundant surface hydroxyl groups and carbonate-like species, were prepared using a simple template free solution method. The obtained magnetic microspheres were characterized by field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, vibrating sample magnetometry and X-ra...

متن کامل

Enhancement of gas-filled microbubble R2* by iron oxide nanoparticles for MRI.

Gas-filled microbubbles have the potential to become a unique intravascular MR contrast agent due to their magnetic susceptibility effect, biocompatibility, and localized manipulation via ultrasound cavitation. However, microbubble susceptibility effect is relatively weak when compared with other intravascular MR susceptibility contrast agents. In this study, enhancement of microbubble suscepti...

متن کامل

Removal of Crystal violet Dye from Aqueous Solution Using Surfactant Modified NiFe2O4 as Nanoadsorbent; Isotherms, Thermodynamics and kinetics Studies

The removal of crystal violet from aqueous solution by NiFe2O4 magnetic nanoparticles treated with sodium dodecyl sulfate was investigated. The modified magnetic nanoparticles were prepared by chemical reaction of a mixture of Ni+2 and Fe+3 ions mixture in aqueous solution at the presence of ammonia and then sodium dodecyl sulfate was utilized as an ionic surfactant to modified the obtained mag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 28  شماره 

صفحات  -

تاریخ انتشار 2014